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a  b  s  t  r  a  c  t

In  this  letter,  partial  upper  bounds  on  minimum  distance  for  turbo  codes  with  permutation  polynomial
(PP)  based  interleavers  over  integer  rings  are  derived  using  the  fact that  PPs  are  equivalent  to a family
of  linear  permutation  polynomials  (LPPs).  It is  shown  that  upper  bounds  on  minimum  distance  of  turbo
codes  using  higher  order  PP  based  interleavers  are  bounded  by  a function  of the  number  of  equivalent  LPPs
for PPs.  Besides,  it is shown  that when  the constant  terms  of LPPs  are  dithered,  the  resulting  dithered  LPP
interleavers  perform  better  than  the quadratic  permutation  polynomial  (QPP)  based  interleavers  used  in
long term  evolution  (LTE)  standard  or than other  good  QPP or cubic  permutation  polynomial  (CPP)  based
interleavers  given  in  the  literature.

©  2015  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

Permutation polynomial (PP) based interleavers over integer
rings have been widely studied [1–3,6–8]. In particular quadratic
permutation polynomial (QPP) based interleavers were empha-
sized due to their simple implementation [3] as well as excellent
performance [1]. In [1], upper bounds on minimum distance of
turbo codes with QPP based interleavers are shown.

Higher order PP based interleavers have also been investigated
for better performance and implementation, in particular for cubic
permutation polynomial (CPP) based interleavers [2,3]. However
little is known for minimum distance of turbo codes with higher
order PP based interleavers. In this letter, the technique shown in
[3] is used to decompose higher order PPs into linear permutation
polynomials (LPPs) and partial upper bounds on the minimum dis-
tance for turbo codes using higher order PP based interleavers are
shown.

It is also shown that when the constant terms of the LPPs which
are equivalent to PPs are dithered, better frame error rate (FER)
performance is obtained.

For a more succinct writing, in the following, PP based inter-
leavers are denoted as PP.
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2. LPP representation of higher order PPs

In this section, previous results on higher order PPs are briefly
reviewed and upper bounds on the minimum distance for turbo
codes using PPs are shown. Firstly, the equivalence of PPs and a
family of LPPs is shown. In the following, a parallel LPP (PLPP) is
defined.

Definition 2.1. [3] Let p(x) be an interleaver such that

p(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p0(x) = P1,0x + P0,0, mod(x, L) = 0

p1(x) = P1,1x + P0,1, mod(x, L) = 1

· · ·
pL−1(x) = P1,L−1x + P0,L−1, mod(x, L) = L − 1,

which can be also represented in the following form,

p(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p0(y) = P1,0 · Ly + P′0,0, x = Ly

p1(y) = P1,1 · Ly + P′0,1, x = Ly + 1

· · ·
pL−1(y) = P1,L−1 · Ly + P′0,L−1, x = Ly + (L − 1),

with 1 ≤ L < N, where N is the interleaver length, L|N and 0 ≤ y ≤
N
L − 1. Then p(x) is called a PLPP (i.e., p(x) consists of L LPPs).

For each l = 0, 1, · · · , L − 1, pl(y) is a LPP and since a LPP can be
implemented using only additions and comparisons, a PLPP can also
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